6 research outputs found

    Self-adaptive hybrid genetic algorithm using an ant-based algorithm

    Get PDF
    The pheromone trail metaphor is a simple and effective way to accumulate the experience of the past solutions in solving discrete optimization problems. Ant-based optimization algorithms have been successfully employed to solve hard optimization problems. The problem of achieving an optimal utilization of a hybrid genetic algorithm search time is actually a problem of finding its optimal set of control parameters. In this paper, a novel form of hybridization between an ant-based algorithm and a genetic-local hybrid algorithm is proposed. An ant colony optimization algorithm is used to monitor the behavior of a genetic-local hybrid algorithm and dynamically adjust its control parameters to optimize the exploitation-exploration balance according to the fitness landscape

    Accelerating genetic schema processing through local search

    Get PDF
    peer reviewedAchieving a balance between the exploration and exploitation capabilities of genetic algorithms is a key factor for their success in solving complicated search problems. Incorporating a local search method within a genetic algorithm can enhance the exploitation of local knowledge but it risks decelerating the schema building process. This paper defines some features of a local search method that might improve the balance between exploration and exploitation of genetic algorithms. Based on these features a probabilistic local search method is proposed. The proposed search method has been tested as a secondary method within a staged hybrid genetic algorithm and as a standalone method. The experiments conducted showed that the proposed method can speed up the search without affecting the schema processing of genetic algorithms. The experiments also showed that the proposed algorithm as a standalone algorithm can, in some cases, outperform a pure genetic algorithm

    Self-adaptive learning for hybrid genetic algorithms

    Get PDF

    Artificial Intelligence Search Strategies for Autonomous Underwater Vehicles Applied for Submarine Groundwater Discharge Site Investigation

    No full text
    In this study, a set of different search strategies for locating submarine groundwater discharge (SGD) are investigated. This set includes pre-defined path planning (PPP), adapted random walk (RW), particle swarm optimisation (PSO), inertia Levy-flight (ILF), self-organising-migration-algorithm (SOMA), and bumblebee search algorithm (BB). The influences of self-localisation and communication errors and limited travel distance of the autonomous underwater vehicles (AUVs) on the performance of the proposed algorithms are investigated. This study shows that the proposed search strategies could not outperform the classic search heuristic based on full coverage path planning if all AUVs followed the same search strategy. In this study, the influence of self-localisation and communication errors was investigated. The simulations showed that, based on the median error of the search runs, the performance of SOMA was in the same order of magnitude regardless the strength of the localisation error. Furthermore, it was shown that the performance of BB was highly affected by increasing localisation errors. From the simulations, it was revealed that all the algorithms, except for PSO and SOMA, were unaffected by disturbed communications. Here, the best performance was shown by PPP, followed by BB, SOMA, ILF, PSO, and RW. Furthermore, the influence of the limited travel distances of the AUVs on the search performance was evaluated. It was shown that all the algorithms, except for PSO, were affected by the shorter maximum travel distances of the AUVs. The performance of PPP increased with increasing maximum travel distances. However, for maximum travel distances > 1800 m the median error appeared constant. The effect of shorter travel distances on SOMA was smaller than on PPP. For maximum travel distances < 1200 m, SOMA outperformed all other strategies. In addition, it can be observed that only BB showed better performances for shorter travel distances than for longer ones. On the other hand, with different search strategies for each AUV, the search performance of the whole swarm can be improved by incorporating population-based search strategies such as PSO and SOMA within the PPP scheme. The best performance was achieved for the combination of two AUVs following PPP, while the third AUV utilised PSO. The best fitness of this combination was 15.9. This fitness was 26.4% better than the performance of PPP, which was 20.4 on average. In addition, a novel mechanism for dynamically selecting a search strategy for an AUV is proposed. This mechanism is based on fuzzy logic. This dynamic approach is able to perform at least as well as PPP and SOMA for different travel distances of AUVs. However, due to the better adaptation to the current situation, the overall performance, calculated based on the fitness achieved for different maximum travel distances, the proposed dynamic search strategy selection performed 32.8% better than PPP and 34.0% better than SOMA
    corecore